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Abstract
The Miura fold pattern, or the Miura-ori, is a flat-foldable origami pattern with various
applications in engineering and architecture. In addition to free-form variations, scholars have
proposed a number of symmetric derivatives for this classic fold pattern over recent years. In a
previous work, the authors of this paper studied isomorphic variations on the Miura-ori which
led to the development of an ‘isomorphic family’ for this fold pattern. In this paper, we study
non-isomorphic variations on the Miura-ori in order to develop a ‘non-isomorphic family’ for
this pattern. Again we start with the Miura-ori, but reduce the symmetry by migrating from the
original symmetry group to its subgroups, which may also include the enlargement of its unit
cell. We systematically design and classify the non-isomorphic symmetric descendants of the
Miura-ori which are either globally planar, or globally curved, flat-foldable tessellations.

Keywords: origami, the Miura-ori, flat-foldability, symmetry, wallpaper groups

(Some figures may appear in colour only in the online journal)

1. Introduction

The Miura-ori is a globally planar [1] flat-foldable origami
tessellation with a wide range of engineering applications (see,
e.g., [2]). It has been shown [3] that the symmetry group of the
Miura fold pattern is pmg, which is one of the seventeen
wallpaper (or plane symmetry) groups. Two wallpaper patterns
are said to be isomorphic if they belong to the same symmetry
group, although they may have different unit cells. Otherwise,
the patterns are said to be non-isomorphic. The authors of this
paper have developed a framework [1] for the symmetric gen-
eralization of the Miura-ori and studied isomorphic variations
[4] on this pattern which resulted in the design and development
of an ‘isomorphic family’ for this fold pattern. In developing this
family, to obtain less symmetric flat-foldable patterns, we used
systematic enlargements on the unit cell of the Miura-ori, while
at the same time preserving the plane symmetry group.

It has been shown (see, e.g., [5]) that there are exactly
seventeen distinct wallpaper groups. Figure 1 shows the
international notation for the seven wallpaper groups which
we deal with in this paper (see [6] or [7] for all the seventeen
groups). Note that only rotation centres of order 2, 3, 4, or 6
(i.e. rotations by 180°, 120°, 90°, or 60˚, respectively) can

exist in a planar tessellation, which is known as the ‘crys-
tallographic restriction’ [8, 9]. There are subgroup relation-
ships [10] among the seventeen wallpaper groups. For
example, the group pm is a subgroup of the group pmg, since
we can remove some symmetry elements from the pmg unit
cell and obtain a pm unit cell. The group pmg is called a
supergroup for the group pm. This discussion implies that
every pmg wallpaper pattern can be considered to be a pm
pattern; however, pm is not the maximal symmetry group for
a pmg pattern. In this study, we generally describe the max-
imal symmetry group of a pattern to be its symmetry group.
Sometime, more explicitly, we describe the symmetry as
being strictly the maximal symmetry.

In this paper, we explore non-isomorphic variations on
the Miura-ori in order to develop a ‘non-isomorphic family’
for this fold pattern. Again we start with the Miura-ori, but
reduce the symmetry by migrating from pmg to its sub-
groups, which may also include the enlargement of its unit
cell. By ‘enlargement’ we imply putting together a number
of adjacent unit cells to form a larger unit cell which pro-
vides us with more degrees of freedom which we use to
develop design variations on the original pattern. According
to the subgroup relationships among the seventeen
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wallpaper groups [10, 11], the non-isomorphic subgroups of
pmg are pgg, pg, cm, pm, p2 and p1. Three of these six
groups have rectangular unit cells, which are pgg, pg and
pm. We start with the most symmetric subgroup, i.e. pgg,
and carry on the study for the subgroups pg and pm. Then
we study the other three subgroups of pmg, i.e. cm, p2, and
p1, which have non-rectangular unit cells. The naming
scheme is based on Definition 1 in [4].

2. Non-isomorphic descendants with rectangular
unit cells

2.1. Group pgg

Consider a pmg unit cell with lattice translation vectors a and
b. According to the International Tables for Crystallography
[6], the maximal pgg subgroup for this group has a unit cell

Figure 1. International notation for the seventeen plane symmetry groups (adapted from [7]). Bold black lines represent the outline of unit
cells. Double and dashed lines represent reflection and glide reflection axes, respectively. 2-fold axes are shown by rhombuses. The blue
shaded area shows the fundamental region of the pattern. Different colours for a symmetry element represent different classes of that element
in the pattern. Dotted lines for the cm unit cell represent the outline of its centred cell [7] which contains two unit cells.

Figure 2. The transformation process of a pmg unit cell into a pgg unit cell, which includes a unit cell enlargement. The symmetry elements
which are turned off are shown in grey.
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with b′= 2b. It implies that a pggm,1 variation of the Miura-ori
(for any natural number m) does not exist, as a pmg unit cell
with only one quadrilateral in the y-direction cannot be con-
sidered to be a strictly pgg unit cell.

Figure 2 shows the transformation process of a pmg unit
cell into a pgg unit cell. A pmg group can be transformed into
a pgg group through a symmetry reduction transformation. In
figure 2, this transformation is illustrated in three steps. In the
first step, we enlarge the unit cell to obtain a unit cell with
b'= 2b. In the second step, we ‘turn off’ all unnecessary
symmetry elements. The symmetry elements which are turned
off are shown in grey. In this case, we have turned off the
reflection axis, as well as unnecessary 2-fold and glide
reflection axes. It should be noted that a glide reflection axis is
added over the reflection axis which is turned off, as a
reflection axis can also be considered to be a glide reflection
axis. It should be also noted that the retained 2-fold axes have
been re-grouped according to the pgg standard unit cell
through changing their face colour. In the third step, we
eliminate all the symmetry elements which are turned off, and
reshape the fundamental region of the transformed unit cell.

2.1.1. Design variation analysis of pgg2,2. As mentioned
earlier, the maximal pgg subgroup of pmg has a unit cell with
b'= 2b. For a Miura fold pattern, this unit cell, which is called

pgg2,2, is depicted in figure 3, State (0). There is only one
orbit of nodes associated with the unit cell, shown as A0 (the
position of every node in an orbit is defined by symmetry
operations from the position of any one node within the orbit).
Since we are dealing with a pgg group, we have a degree of
freedom for the aspect ratio of the unit cell. We are allowed to
move node A0 in the x- or y-directions. Note here that the
glide reflection axis does not constrain the node in the way

Figure 3.A pgg2,2 variation of the Miura-ori. State (0): a given Miura fold pattern. State (1): a symmetrically perturbed state using all degrees
of freedom. State (1) is not flat-foldable in general; we present a flat-foldable variation of it later in this section.

Figure 4. A set up of four adjacent quadrilaterals from State (1) of
the previous figure.
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that a reflection axis would. As node A0 is a generic node,
there is a constraint equation due to the flat-foldability
condition at this node. In the lower part of figure 3, we have
perturbed the pattern using all the degrees of freedom that we
introduced earlier to obtain a new configuration, State (1).

In order to investigate the application of the flat-
foldability condition to the pattern at node A1, we have
illustrated a set up of four adjacent congruent quadrilaterals
associated with a unit cell, from State (1) of the previous
figure, in figure 4. For clarity, as we are now dealing with a
geometric problem, we ignore the naming scheme for
symmetrically equivalent nodes associated with a unit cell.
We have renamed the vertices of the shaded quadrilateral as
A1, A2, A3 and A4. Note that, symmetrically, all these nodes
are equivalent.

According to figure 4, side A3A4 is a glide-reflection of
side A1A2, with regard to the green glide reflection axis on the
left. Therefore:

A A A A . (1)1 2 3 4=

Applying the flat-foldability constraint at vertex A2, we
conclude that:

. (2)α β π+ =

This implies that:

A A A A (3)1 4 2 3

which means that Q is a trapezoid. In addition, from
equation (1) we can conclude that Q must be an isosceles
trapezoid, which includes parallelograms. (In dealing with
quadrilaterals, we consider the inclusive definition for a
trapezoid, in which a quadrilateral with at least one pair of
parallel sides is a trapezoid. According to this definition, a
parallelogram is a special case of trapezoid. Trapezoids with
exactly one pair of parallel sides are called strict trapezoids.
In this paper, unless otherwise stated, we consider the
inclusive definition for a trapezoid).

According to the above discussion, the starting quad-
rilateral of a pgg2,2 variation of the Miura-ori must be either a
parallelogram, or an isosceles trapezoid. (Note that parallelo-
grams include rectangles, rhombuses and squares, among
which, only rhombuses can generate legitimate variations [1]
of the Miura-ori). These solutions are depicted in figure 5. In
the first case, the pattern is a Miura- ori, and in the second

case, it is not a legitimate variation of the Miura pattern. This
discussion concludes that a flat-foldable pgg2,2 variation of
the Miura-ori does not exist.

2.1.2. Design variation analysis of pgg+2,2. We showed in the
previous section that a flat-foldable pgg2,2 variation of the
Miura-ori does not exist. However, starting from the
alternative standard unit cell, S+ (see [1] or [4]), we can
design a pgg+

2,2 variation of the Miura-ori, which turns out to
be always flat-foldable. Figure 6 illustrates this design
variation. We have illustrated a set up of four adjacent
parallelograms associated with a unit cell, from State (1) of
the previous figure, in figure 7. As revealed by this figure, the
flat-foldability condition at node A is always satisfied.
Therefore, all the pgg+

2,2 variations of the Miura-ori are flat-
foldable. Also, they are all globally planar. An example for
pgg+

2,2 is shown in figure 8. It consists of two different starting
parallelograms, shown as P1 and P2.

In order to continue exploring the minimal pgg variations
of the Miura-ori, the next section discusses the pgg variation
with minimal enlargement of the unit cell in both x- and y-
directions.

2.1.3. Design variation analysis of pgg6,2. Consider a pmg
unit cell with lattice translation vectors a and b. As discussed
in the previous section, the maximal pgg subgroup for this
group has a unit cell with b'= 2b. Having shown that a pgg2,2
variation of the Miura-ori does not exist, we intend to design a
variation of the Miura-ori by applying a minimal enlargement
on the pgg2,2 unit cell. According to the International Tables
for Crystallography [6], the minimal enlargement in the x-
direction which retains the symmetry group of a pgg pattern is
a'= 3a. For a Miura fold pattern, this unit cell is called pgg6,2.
A pgg6,2 unit cell is illustrated in figure 9. There are three
distinct orbits of generic nodes associated with the unit cell,
shown as A, B and C.

In order to investigate the application of the flat-
foldability condition to the pattern, we have illustrated the
fundamental region of a typical pgg6,2 variation of the Miura-
ori accompanied by its surrounding fold lines in figure 10.
The grey nodes in the previous figure have been distinguished
from each other by asterisk (*), dagger (†), and double dagger
(‡), in this figure.

Figure 5. The two possible solutions from applying the flat-foldability condition at vertex A2 to the previous figure. Labels P and T denote
parallelogram and trapezoid, respectively.
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Applying the flat-foldability condition at node C* yields:

C C . (4)2
*

4
* π∠ + ∠ =

We know that, because of the symmetry, C C .4 4
*∠ = ∠ Hence:

C C . (5)2
* 4 π∠ + ∠ =

This implies that:

AC BC* (6)

which means that Q2 is a trapezoid. This also implies that
(note that glide-reflection is an angle-preserving transforma-
tion):

CB C A* * * (7)

which means that Q3 is a trapezoid.
Now we explore the geometry of quadrilateral Q1. From

AC BC*∣∣ we can conclude:

A B . (8)4 3 π∠ + ∠ =

On the other hand, applying the flat-foldability constraint
at nodes A and B, respectively, we obtain:

A A , (9)2 4 π∠ + ∠ =

B B . (10)1 3 π∠ + ∠ =

Substituting A4∠ and B3∠ from equations (9) and (10),
respectively, into equation (8), gives:

A B . (11)2 1 π∠ + ∠ =

Figure 6.A pgg+2,2 variation of the Miura-ori. State (0): a given Miura fold pattern. State (1): a symmetrically perturbed state using all degrees
of freedom.

Figure 7. A set up of four adjacent parallelograms from State (1) of
the previous figure.
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Replacing A2∠ and B1∠ by their respective symmetry
equivalents gives us:

A B . (12)2
†

1
‡ π∠ + ∠ =

This implies that:

A A B B (13)† ‡

which means that Q1 is a trapezoid. This also implies that:

A B . (14)1 2 π∠ + ∠ =

Combining equations (9) and (10) with equation (11) gives:

A B , (15)2 3∠ = ∠
A B . (16)4 1∠ = ∠

We also know from the flat-foldability condition at nodes A
and B, respectively:

A A , (17)1 3 π∠ + ∠ =
B B . (18)2 4 π∠ + ∠ =

Combining equations (17) and (18) with equation (14) gives:

A B , (19)3 2∠ = ∠
A B . (20)1 4∠ = ∠

From equations (15), (16), (19) and (20) we obtain an
interesting result: the two nodes A and B are geometrically

Figure 8. An example for a pgg+2,2 variation of the Miura-ori. It consists of two different starting parallelograms, shown as P1 and P2. Solid
lines show mountain fold lines, while dashed lines represent valley fold lines.

Figure 9. From a symmetry point of view, a pgg6,2 unit cell contains
three distinct orbits of nodes, shown as A, B and C.

Figure 10. The fundamental region of a typical pgg6,2 variation of
the Miura-ori along with its surrounding crease lines. The grey nodes
in the previous figure have been marked by asterisk, dagger, and
double dagger, in this figure.
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congruent. Despite their congruency, they are distinct points
from a symmetry point of view, as they do not belong to the
same orbit. In other words, they are not related to each other
by the symmetry elements of the pattern. In summary,
geometrically, there are two types of nodes in a planar pgg6,2
variation of the Miura fold pattern: a generic node A or B, and
a generic node C.

Figure 11 shows an example for a flat-foldable pgg6,2
variation of the Miura fold pattern alongside the assigned
mountains and valleys. The pattern consists of three different
starting trapezoids, shown as T1, T2 and T3. In order to have a
globally planar variation of the Miura-ori, we need to have all
transverse polylines piecewise parallel. As can be deduced
from equations (6), (7), and (13), this condition is satisfied in

all pgg6,2 variations of the Miura-ori. As a result, all the pgg6,2
variations of the Miura-ori are globally planar.

The pgg6,2 variation of the Miura-ori is a globally planar
pattern which folds to a frieze pattern, without having any
(globally) straight longitudinal polyline. In other words, we
have managed to replace the straight longitudinal lines in the
Miura fold pattern by a pair of alternating polylines, while
preserving the global planarity of the pattern. Figure 12 shows
a polypropylene model of the fold pattern depicted in
figure 11.

Starting from the alternative standard unit cell, we can
design a 6 × 2 isomorphic variation of the Miura-ori, pgg+

6,2,
which is different from pgg6,2. We have shown [13] that all
the pgg+

6,2 variations of the Miura-ori are globally planar.

Figure 11. An example for a flat-foldable pgg6,2 variation of the Miura-ori. It consists of three different starting trapezoids, shown as T1, T2
and T3. Solid lines show mountain fold lines, while dashed lines represent valley fold lines.

Figure 12. A polypropylene model of the fold pattern depicted in the previous figure [12].
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2.2. Group pg

Figure 13 shows the unit cell of a pmg wallpaper group versus
the unit cell of a pg wallpaper group. The symmetry reduction
transformation is illustrated in two steps. In the first step, we
turn off all unnecessary symmetry elements. In this case, we
have turned off the 2-fold axes, as well as the reflection axis,
while retaining the glide reflection axes. In the second step,
we eliminate all the symmetry elements which are turned off,
and reshape the fundamental region of the transformed
unit cell.

In order to have vertical glide reflection axes in the study
of pg descendants of the Miura-ori, we use a 90° rotated
version of the ITC standard pg unit cell. The reason is that
since we intend to retain the pmg unit cell of the Miura-ori, in
which the glide reflection axes are vertical, as a reference for
our variations, tracking the changes through the symmetry
reduction process is easier when glide reflection axes are
vertical.

An extensive study of the minimal pg variations of the
Miura-ori is presented in [13], proving that flat-foldable pg2,1,
pg2,2 and pg+2,2 variations of the Miura-ori do not exist.
Figure 14 shows a flat-foldable pg6,1 variation of the Miura
fold pattern alongside the assigned mountains and valleys.

The pattern consists of three different starting parallelograms,
shown as P1, P2 and P3.

2.2.1. Design variation analysis of pg6,2. Consider a pmg unit
cell with lattice translation vectors a and b. Having shown
[13] that a pg2,2 variation of the Miura-ori does not exist, we
intend to find a variation of the Miura-ori by applying a
minimal enlargement in the x-direction on the pg2,2 unit cell.
The minimal enlargement in the x-direction which retains the
symmetry group of a pg pattern is a'= 3a. For a Miura fold
pattern, this unit cell is called pg6,2. State (0) in figure 15
shows a pg6,2 unit cell on a Miura fold pattern in its original
configuration. There are six distinct orbits of nodes associated
with the unit cell. In State (1), we have perturbed the pattern
using all degrees of freedom.

According to our studies, in general, pg6,2 is not an easily
constructible variation of the Miura-ori. In fact, the problem
gets increasingly complex as we increase the number of orbits
of nodes. Nevertheless, we have developed a computer code
which finds solutions for pg6,2 through minimizing the total
flat-foldability error. Consider a symmetric perturbation of the
Miura-ori shown in State (1) of figure 15. Denoting the flat-
foldability error (defined [14] as the sum of opposite angles

Figure 13. The transformation process of a pmg unit cell into a pg unit cell. The symmetry elements which are turned off are shown in grey.

Figure 14. An example for a flat-foldable pg6,1 variation of the Miura-ori. It consists of three different starting parallelograms, shown as P1,
P2 and P3. Solid lines show mountain fold lines, while dashed lines represent valley fold lines.
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Figure 15. A pg6,2 variation of the Miura-ori. State (0): a given Miura fold pattern. State (1): a perturbed state using all degrees of freedom.
There are six different starting convex quadrilaterals in the pattern, shown as Q1, Q2, …, Q6. State (1) is not flat-foldable in general; we
present a flat-foldable variation of it later in this section.
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minus π) at nodes A1, B1, C1, D1, E1 and F1 as eA, eB, eC, eD,
eE and eF, respectively, the total flat-foldability error et of the
tessellation is defined as:

e e e e e e e (21)t A B C D E F
2 2 2 2 2 2= + + + + +

which is the objective function to be minimized. Assuming
that we are given a fixed unit cell (so rx, ā0 and b are fixed),
we intend to find a vector V containing the coordinates of the
six nodes associated with the fundamental region of the unit
cell:

A B C D E FV [ , , , , , ]. (22)=

In order to avoid undesirable answers from our
programme in which some of the quadrilaterals are self-
intersecting, we use the concept of signed or algebraic area.
By convention, the signed area of a triangle is positive if it is
oriented counter-clockwise, and is negative if it is clockwise.
The signed area of a polygon is the sum of the signed areas of
the triangles which can be obtained by drawing its diagonals

(see, e.g., [15] for more details). We define a vector S
containing the signed area of the six quadrilateral facets:

[ ]( )r a b S S SS V, ¯ , , , , ..., . (23)x 0 1 2 6=

The area of a perturbed pg6,2 unit cell is (UC stands for
unit cell):

S a b r a b6 ¯ . (24)xUC 1 0
2= ′ ′ =

Knowing that S S ,FR
1

2 UC= where FR stands for funda-
mental region, we have:

S r a b3 ¯ . (25)xFR 0
2=

Using a unit cell recomposition process (see [1] or [4]),
we conclude that the sum of the areas of the six quadrilateral
facets is equal to the area of the fundamental region:

S S . (26)
i

i

1

6

FR∑ =
=

Figure 16. Flowchart of the computational design generation process of the pg6,2 variation of the Miura-ori. Outputs are checked to be
legitimate [1] variations.
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The average area of the quadrilateral facets is:

S S r a b
1

6

1

2
¯ . (27)

i

i xavg

1

6

0
2∑= =

=

In order for the programme to return useful and
reasonable results, we add the following constraint to the
minimization process:

k S S k S i(1 6), (28)imin avg max avg< < ⩽ ⩽

Figure 17. An example for a flat-foldable pg6,2 variation of the Miura-ori emerged from the computational design algorithm presented in
figure 16. It consists of six different starting convex quadrilaterals, shown as Q1, Q2, Q3, Q4, Q5 and Q6. Solid lines show mountain fold lines,
while dashed lines represent valley fold lines.

Figure 18. The transformation process of a pmg unit cell into a pm unit cell. The symmetry elements which are turned off are shown in grey.

Figure 19.An example for a flat-foldable pm4,2 variation of the Miura-ori. It consists of four different starting convex quadrilaterals, shown as
Q1, Q2, Q3 and Q4. Solid lines show mountain fold lines, while dashed lines represent valley fold lines.
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where kmin and kmax are the lower and upper multiplication
factors, respectively, chosen by the user and applied to the
average facet area. The flowchart of the computational design
generation process of the pg6,2 variation of the Miura-ori is
depicted in figure 16.

Our investigations show that we are unlikely to obtain
solutions for randomly selected initial points. However, if we
use reasonably small random deviations from the nodal
coordinates of a flat-foldable pmg6,2 variation of the Miura-ori
(sharing the same unit cell aspect ratio) as the initial points,
the optimization function converges to a solution which is a
flat-foldable strictly pg6,2 variation of the Miura-ori. Figure 17
shows an example for a computationally generated flat-
foldable pg6,2 variation of the Miura fold pattern, alongside
the assigned mountains and valleys. The pattern consists of
six different starting convex quadrilaterals, shown as Q1, Q2,
…, Q6.

Adding the global planarity constraint to the problem
decreases the number of degrees of freedom and makes the
pattern constructible using a ruler and a protractor. An
example for a flat-foldable planar pg6,2 variation of the Miura
fold pattern is presented in [13].

2.3. Group pm

The last subgroup of pmg with rectangular unit cell which we
study in this paper is pm. In order to study the symmetry
reduction process from pmg to pm, it is easier to use the
primary non-standard choice [1] for the pmg unit cell. This
unit cell is illustrated again on the left hand side of figure 18,
which shows the symmetry reduction transformation of a pmg
unit cell into a pm unit cell.

In comparison to the other non-isomorphic variations stu-
died so far, the pm variation of the Miura-ori is easily

Table 1. The subgroups of pmg with non-rectangular unit cells. The bold solid lines depict the borders of the unit cells. The bold dotted lines
for the group cm represent the borders of the centred cell of the pattern. The blue shaded areas show the fundamental regions of the unit cells.
Double and dashed lines represent reflection and glide reflection axes, respectively. 2-fold axes are shown by rhombuses. The number of
degrees of freedom (DOFs) are given to define the shape of the unit cell.

Figure 20. A cm4,2 unit cell contains three distinct orbits of nodes, shown as A, B and C.
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generalizable. We have shown [13] that the generalized pm
variation of the Miura-ori in both longitudinal and transverse
directions simultaneously has the general form pmm,n, where
m= p2 , and n and p are natural numbers. It consists of n p( 1)+
distinct orbits of nodes and np distinct starting convex quad-
rilaterals. Figure 19 shows a pm4,2 variation of the Miura-ori.

3. Non-isomorphic descendants with non-
rectangular unit cells

This section studies the non-isomorphic symmetric variations
of the Miura-ori with non-rectangular unit cells, i.e. the plane
symmetry groups cm, p2, and p1. The group cm has a

rhombic unit cell which has one degree of freedom for the
unit cell layout, and both groups p1 and p2 possess a paral-
lelogram unit cell with two degrees of freedoms for the unit
cell layout. These unit cells are presented in table 1 along with
their respective degrees of freedom. The group cm has a
rectangular ‘centred cell’ [7] which is twice as large as the
rhombic unit cell. This section explores the cm, p2 and p1
variations of the Miura-ori, respectively.

3.1. Group cm

Consider a pmg unit cell with lattice translation vectors a and
b. There is not any direct information about the enlarged
maximal cm subgroup for this group in the International

Figure 21. An example for a flat-foldable cm4,2 variation of the Miura-ori. It consists of two different starting trapezoids, shown as T1 and T2.
Solid lines show mountain fold lines, while dashed lines represent valley fold lines.

Figure 22. An example for a flat-foldable (p2)2,2 variation of the Miura-ori (θ = 20°). It consists of two different starting convex
quadrilaterals, shown as Q1 and Q2. Solid lines show mountain fold lines, while dashed lines represent valley fold lines.
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Tables for Crystallography [6]. Nevertheless, we can extract
this information from the data available for the group pm,
according to which the maximal cm subgroup for a pm pattern
has a unit cell doubled in both x- and y-directions. As we
know that the maximal pm subgroup for the Miura-ori (a pmg
pattern) has a unit cell with the same size called pm2,1, we can
conclude that the maximal cm variation of the Miura-ori is
cm4,2. An important point regarding the group cm is that for a
cmX,Y variation of the Miura-ori the number of quadrilaterals

associated with the unit cell is X Y( ) 2,× rather than X Y ,×
owing to the fact that the area of the rhombic unit cell of a cm
pattern is half of the area of its rectangular centred cell.

A cm4,2 unit cell is shown in figure 20. There are three
distinct orbits of nodes associated with the unit cell, shown as
A, B and C in the figure.

Starting from the above unit cell, we have designed [13]
the cm4,2 variation of the Miura-ori, and have shown that all
the cm4,2 variations of the Miura-ori are globally planar.
Figure 21 shows an example for a flat-foldable cm4,2 variation
of the Miura fold pattern alongside the assigned mountains
and valleys. The pattern consists of two different starting
trapezoids T1 and T2.

We have also studied (see [13] for more details) minimal
variations on the minimal cm variation of the Miura-ori, i.e.
cm4,2, in the x- and y-directions, respectively. According to
the International Tables for Crystallography [6], the maximal
isomorphic subgroup of a cm group has either a unit cell with
a'= 3a, or a unit cell with b'= 3b. For a Miura fold pattern,
these unit cells are called cm12,2 and cm4,6, respectively.
Example patterns are presented in [13].

3.2. Group p2

Consider a pmg unit cell with lattice translation vectors a
and b. According to the International Tables for Crystal-
lography [6], the maximal p2 subgroup for this group has a
unit cell with the same size. We can deduce from the same
reference that the maximal isomorphic subgroup for a p2
pattern has a unit cell doubled either in the x- or in the y-
direction. In general, for a p2 wallpaper pattern with a unit
cell height h and a base (width) b, it can be shown that a
wallpaper pattern with h mh′ = or b nb′ = is an iso-
morphic subgroup of the initial unit cell for any natural
numbers m and n.

Figure 23. Simulation of the folding process of the (p2)2,2 pattern
shown in the previous figure, using the Freeform Origami
software [16].

Figure 24. An example for a flat-foldable planar (p2)+2,2 variation of the Miura-ori (θ= 12°). It consists of four different starting
parallelograms, shown as P1, P2, P3 and P4. Solid lines show mountain fold lines, while dashed lines represent valley fold lines.
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Various p2 descendants of the Miura-ori are studied in
[13]. As an example, a flat-foldable (p2)2,2 variation of the
Miura-ori is shown in figure 22. A computer simulation of the
folding process of this pattern is depicted in figure 23. As can
be seen from this figure, the pattern is globally curved. As
another example, a flat-foldable (p2)+2,2 variation of the Miura-
ori is shown in figure 24. This pattern is an inclined Miura-
ori [1].

3.3. Group p1

The group p1 is the least symmetric wallpaper group. The unit
cell variation scheme for this group is similar to the group p2

discussed in the previous section. Various p1 descendants of
the Miura-ori are investigated in [13]. It has been shown that a
(p1)2,1 variation of the Miura-ori does not exist. Figure 25
shows an example for a flat-foldable (p1)4,1 variation of the
Miura fold pattern alongside the assigned mountains and
valleys. The pattern consists of four different starting paral-
lelograms, shown as P1, P2, P3 and P4.

Figure 26 shows an example for a flat-foldable (p1)2,2
variation of the Miura fold pattern, alongside the assigned
mountains and valleys. The pattern consists of four dif-
ferent starting convex quadrilaterals, shown as Q1, Q2, Q3

and Q4.

Figure 25. An example for a flat-foldable (p1)4,1 variation of the Miura-ori (θ = 20°). It consists of four different starting parallelograms,
shown as P1, P2, P3 and P4. Solid lines show mountain fold lines, while dashed lines represent valley fold lines.

Figure 26.An example for a flat-foldable (p1)2,2 variation of the Miura-ori (θ= 9°). It consists of four different starting convex quadrilaterals,
shown as Q1, Q2, Q3 and Q4. Solid lines show mountain fold lines, while dashed lines represent valley fold lines.
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4. Conclusions

Based on the subgroup relationships among the plane sym-
metry groups, and using a previously developed framework
for symmetric generalization of the Miura-ori, we studied
non-isomorphic symmetric variations on this pattern. We
started with the Miura-ori and reduced its symmetry by
migrating from pmg to its subgroups, which may also include
the enlargement of its unit cell. We explored possible flat-
foldable non-isomorphic descendants for the Miura-ori, and
presented example fold patterns for possible variations.
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